Classification proposal based on multiples of 6
ES | EN

Sets: Pp, Np and P

Pp
P
Np
Np₁
Np₂
Pp = {Pp: Pp is possible prime}
Pp = {6x ± 1 : x ∈ N ≥ 1; x ≤ N previously defined}
Pp = {Ppa ∪ Ppb : Ppa ∈ 6x + 1, Ppb ∈ 6x - 1}
Pp = {Pp1, Pp2, Pp3...Ppk}
Np = {Np: Np is a non-prime and therefore composite}
Np = {(6·Ppn)·i ± Ppn : Ppn ∈ Pp ≤ √N; i ∈ N ≤ (Ppk + √Ppk) / 6Ppn}
Np = {Np1, Np2, Np3...Npk}
Np ⊆ Pp
Np₁ = {(Ppn·4 + Ppn) + (Ppn·x) : Np₁ ≤ Npk}
Np₁ = {Np₁: Np₁ ∈ Npb si Np₁n ∈ Ppb}
Np₁ = {Np₁: Np₁ ∈ Npa si Np₁n ∈ Ppa}
Np₁ = {Np₁1, Np₁2, Np₁3...Np₁k}
Np₁ ⊆ Np
Np₂ = {(Ppn·4 + Ppn) + (Ppn·2) + (6·Ppn·x) : Np₂ ≤ Npk}
Np₂ = {Np₂: Np₂ ∈ Npa si Np₂n ∈ Ppb}
Np₂ = {Np₂: Np₂ ∈ Npb si Np₂n ∈ Ppa}
Np₂ = {Np₂1, Np₂2, Np₂3...Np₂k}
Np₂ ⊆ Np
P = {P: P is a prime number}
P = Pp \ Np
{P1, P2, P3...Pk}
Pp = Np ∪ P
Np₁ ⊆ Np
Np₂ ⊆ Np
P = Pp \ Np